资源类型

期刊论文 374

会议视频 9

年份

2023 25

2022 47

2021 38

2020 44

2019 15

2018 16

2017 18

2016 20

2015 18

2014 16

2013 16

2012 20

2011 16

2010 10

2009 13

2008 9

2007 11

2006 5

2005 5

2004 2

展开 ︾

关键词

环境 5

农业科学 4

增材制造 3

形状记忆合金 3

4D打印 2

人工神经网络 2

动力特性 2

土壤 2

基质吸力 2

微波遥感 2

机器学习 2

模态 2

膨胀土 2

重金属 2

风化砂 2

ANSYS 1

B样条函数 1

DX桩 1

Ni–Ti–Cu–V合金 1

展开 ︾

检索范围:

排序: 展示方式:

Soil arching effect of Lattice-Shaped Diaphragm Wall as bridge foundation

Jiujiang WU, Lingjuan WANG, Qiangong CHENG

《结构与土木工程前沿(英文)》 2017年 第11卷 第4期   页码 446-454 doi: 10.1007/s11709-017-0397-7

摘要: As a new type of bridge foundation, Lattice-Shaped Diaphragm Wall (hereinafter for LSDW) is highly concerned in relevant construction area but its research is far from achievement. Based on PFC , the soil arching effect of LSDWs is studied thoroughly in this paper and the special attention is given to its influencing factors. It turns out to be that a differential wall-soil settlement can be found at the lower location of soil core of an LSDW which is one of the trigger factors of soil arching; meanwhile, the differential settlement degree can reflect the exertion degree of soil arching; the shape of soil arching is basically a hemisphere which can be explained by the theory proposed by Hewlett and Randolph; normally, the chamber number is a negative factor for the development of soil arching; the soil arching effect is significantly influenced by the distance of two adjacent wall elements and the foundation depth, and a relatively large or small value of these factors is disadvantageous to the exertion of soil arching; in addition, the soil arching effect increase with the growth of stiffness and friction coefficient of particles and the friction coefficient of particles has insignificant influence on the development of soil arching effect compared with particle stiffness.

关键词: LSDW     soil arching     PFC2D     shape of soil arching     influencing factors    

Multi-scale investigation of active failure for various modes of wall movement

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 961-979 doi: 10.1007/s11709-021-0738-4

摘要: Retained backfill response to wall movement depends on factors that range from boundary conditions to the geometrical characteristic of individual particles. Hence, mechanical understanding of the problem warrants multi-scale analyses that investigate reciprocal relationships between macro and micro effects. Accordingly, this study attempts a multi-scale examination of failure evolution in cohesionless backfills. Therefore, the transition of retained backfills from at-rest condition to the active state is modeled using the discrete element method (DEM). DEM allows conducting virtual experiments, with which the variation of particle and boundary properties is straightforward. Hence, various modes of wall movement (translation and rotation) toward the active state are modeled using two different backfills with distinct particle shapes (spherical and nonspherical) under varying surcharge. For each model, cumulative rotations of single particles are tracked, and the results are used to analyze the evolution of shear bands and their geometric characteristics. Moreover, dependencies of lateral pressure coefficients and coordination numbers, as respective macro and micro behavior indicators, on particle shape, boundary conditions, and surcharge levels are investigated. Additionally, contact force networks are visually determined, and their influences on pressure distribution and deformation mechanisms are discussed with reference to the associated modes of wall movement and particle shapes.

关键词: discrete-element modelling     granular materials     retaining walls     particle shape     arching    

Improved genetic algorithm and its application to determination of critical slip surface with arbitrary shapein soil slope

LI Liang, CHI Shichun, LIN Gao, CHENG Yungming

《结构与土木工程前沿(英文)》 2008年 第2卷 第2期   页码 145-150 doi: 10.1007/s11709-008-0016-8

摘要: In order to overcome the problem of being trapped by the local minima encountered in applying the simple genetic algorithm (GA) to search the critical slip surface of the slope, an improved procedure based on the harmony search algorithm is proposed. In the searching computation, the new solutions are obtained from the whole information of the current generation. The proposed method may be applied to calculate the minimum factors of safety of two complicated soil slopes. Comparison of the results with existing examples given by other authors has shown that the proposed method is feasible for stability analysis of soil slopes.

关键词: information     algorithm     Comparison     generation     feasible    

An extended thermo-mechanically coupled algorithm for simulation of superelasticity and shape memoryeffect in shape memory alloys

S. HASHEMI,H. AHMADIAN,S. MOHAMMADI

《结构与土木工程前沿(英文)》 2015年 第9卷 第4期   页码 466-477 doi: 10.1007/s11709-015-0300-3

摘要: Thermo-mechanical coupling in shape memory alloys is a very complicated phenomenon. The heat generation/absorption during forward/reverse transformation can lead to temperature-dependent variation of its mechanical behavior in the forms of superelasticity and shape memory effect. However, unlike the usual assumption, slow loading rate cannot guarantee an isothermal process. A two-dimensional thermo-mechanically coupled algorithm is proposed based on the original model of Lagoudas to efficiently model both superelasticity and shape memory effects and the influence of various strain rates, aspect ratios and boundary conditions. To implement the coupled model into a finite element code, a numerical staggered algorithm is employed. A number of simulations are performed to verify the proposed approach with available experimental and numerical data and to assess its efficiency in solving complex SMA problems.

关键词: shape memory alloy     thermo-mechanical coupling     superplasticity     shape memory effect    

A novel shape memory alloy actuated soft gripper imitated hand behavior

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0700-8

摘要: The limited length shrinkage of shape memory alloy (SMA) wire seriously limits the motion range of SMA-based gripper. In this paper, a new soft finger without silicone gel was designed based on pre bent SMA wire, and the finger was back to its original shape by heating SMA wire, rather than relying only on heat exchange with the environment. Through imitating palm movement, a structure with adjustable spacing between fingers was made using SMA spring and rigid spring. The hook structure design at the fingertip can form self-locking to further improve the load capacity of gripper. Through the long thin rod model, the relationship of the initial pre bent angle on the bending angle and output force of the finger was analyzed. The stress-strain model of SMA spring was established for the selection of rigid spring. Three grasping modes were proposed to adapt to the weight of the objects. Through the test of the gripper, it was proved that the gripper had large bending amplitude, bending force, and response rate. The design provides a new idea for the lightweight design and convenient design of soft gripper based on SMA.

关键词: shape memory alloy (SMA)     pre bent     wire     gripper     grasping mode     lightweight    

Size and shape effects of MnFeO nanoparticles as catalysts for reductive degradation of dye pollutants

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 108-171 doi: 10.1007/s11783-021-1396-4

摘要: The magnetic nanoparticles that are easy to recycle have tremendous potential as a suitable catalyst for environmental toxic dye pollutant degradation. Rationally engineering shapes and tailoring the size of nanocatalysts are regarded as an effective manner for enhancing performances. Herein, we successfully synthesized three kinds of MnFe2O4 NPs with distinctive sizes and shapes as catalysts for reductive degradation of methylene blue, rhodamine 6G, rhodamine B, and methylene orange. It was found that the catalytic activities were dependent on the size and shape of the MnFe2O4 NPs and highly related to the surface-to-volume ratio and atom arrangements. Besides, all these nanocatalysts exhibit selectivity to different organic dyes, which is beneficial for their practical application in dye pollutant treatment. Furthermore, the MnFe2O4 NPs could be readily recovered by a magnet and reused more than ten times without appreciable loss of activity. The size and shape effects of MnFe2O4 nanoparticles demonstrated in this work not only accelerate further understanding the nature of nanocatalysts but also contribute to the precise design of nanoparticles catalyst for pollutant degradation.

关键词: Dye degradation     MnFe2O4 nanoparticles     Size and shape-control    

Temperature effects of shape memory alloys (SMAs) in damage control design of steel portal frames

Xiaoqun LUO, Hanbin GE, Tsutomu USAMI

《结构与土木工程前沿(英文)》 2012年 第6卷 第4期   页码 348-357 doi: 10.1007/s11709-012-0176-4

摘要: The objective of the present study is to analytically investigate temperature effects of an axial-type seismic damper made of shape memory alloys (SMAs) equipped in steel frames. Based on a modified multilinear one dimensional constitutive model of SMAs, two types of SMAs are employed, which have different stress plateau and different stress growth rate with temperature increase. Temperature effects of SMA dampers on seismic performance upgrading are discussed in three aspects: different environment temperatures; rapid loading rate induced heat generation and different SMA fractions. The analysis indicates that the effect of environment temperature should be considered for the SMA damper in steel frames. However, the rapid loading rate induced heat generation has little adverse effect.

关键词: damage control design     shape memory alloy     temperature effect    

A fully solid-state cold thermal energy storage device for car seats using shape-memory alloys

《能源前沿(英文)》 2023年 第17卷 第4期   页码 504-515 doi: 10.1007/s11708-022-0855-3

摘要: Thermal energy storage has been a pivotal technology to fill the gap between energy demands and energy supplies. As a solid-solid phase change material, shape-memory alloys (SMAs) have the inherent advantages of leakage free, no encapsulation, negligible volume variation, as well as superior energy storage properties such as high thermal conductivity (compared with ice and paraffin) and volumetric energy density, making them excellent thermal energy storage materials. Considering these characteristics, the design of the shape-memory alloy based the cold thermal energy storage system for precooling car seat application is introduced in this paper based on the proposed shape-memory alloy-based cold thermal energy storage cycle. The simulation results show that the minimum temperature of the metal boss under the seat reaches 26.2 °C at 9.85 s, which is reduced by 9.8 °C, and the energy storage efficiency of the device is 66%. The influence of initial temperature, elastocaloric materials, and the shape-memory alloy geometry scheme on the performance of car seat cold thermal energy storage devices is also discussed. Since SMAs are both solid-state refrigerants and thermal energy storage materials, hopefully the proposed concept can promote the development of more promising shape-memory alloy-based cold and hot thermal energy storage devices.

关键词: shape-memory alloy (SMA)     elastocaloric effect (eCE)     cooled seat     cold thermal energy storage    

板形计法的定义及实验应用

张进之,段春华,朱健勤

《中国工程科学》 2001年 第3卷 第12期   页码 47-51

摘要:

板形测控数学模型、解析板形刚度理论和板形板厚协调规律的综合称为板形计法。采用两种实验方式验证了板形计法的正确性和实用性,其一是通过轧铝板实验,计算轧机板形刚度和轧件板形刚度,由实测铝板凸度验证板形刚度方程;其二是由CVC板形控制热连轧机实测数据,用离线计算自适应系数的方法验证板形测控数学模型。

关键词: 板形计法     板形刚度方程     测控数学模型     后计算     自适应    

Calculation method on shape finding of self-anchored suspension bridge with spatial cables

Yan HAN, Zhengqing CHEN, Shidong LUO, Shankui YANG

《结构与土木工程前沿(英文)》 2009年 第3卷 第2期   页码 165-172 doi: 10.1007/s11709-009-0021-6

摘要: Based on the spatial model, a reliable and accurate calculation method on the shape finding of self-anchored suspension bridge with spatial cables was studied in this paper. On the principle that the shape of the main cables between hangers is catenary, the iteration method of calculating the shapes of the spatial main cables under the load of hanger forces was deduced. The reasonable position of the saddle was determined according to the shape and the theoretical joint point of the main cables. The shapes of the main cables at completed cable stage were calculated based on the unchanging principle of the zero-stress lengths of the main cables. By using a numerical method combining with the finite element method, one self-anchored suspension bridge with spatial cables was analyzed. The zero-stress length of the main cables, the position of the saddle, and the pre-offsetting of the saddle of the self-anchored suspension bridge were given. The reasonable shapes of the main cables at bridge completion stage and completed cable stage were presented. The results show that the shape-finding calculation method is effective and reliable.

关键词: bridge engineering     self-anchored suspension bridges     special cables     shape-finding     calculation method    

Shape selective catalysis in methylation of toluene: Development, challenges and perspectives

Jian Zhou, Zhicheng Liu, Yangdong Wang, Dejin Kong, Zaiku Xie

《化学科学与工程前沿(英文)》 2018年 第12卷 第1期   页码 103-112 doi: 10.1007/s11705-017-1671-x

摘要: Toluene methylation with methanol offers an alternative method to produce -xylene by gathering methyl group directly from C1 chemical sources. It supplies a “molecular engineering” process to realize directional conversion of toluene/methanol molecules by selective catalysis in complicated methylation system. In this review, we introduce the synthesis method of -xylene, the development history of methylation catalysts and reaction mechanism, and the effect of reaction condition in -selective technical process. If constructing -xylene as the single target product, the major challenge to develop -selective toluene methylation is to improve the -xylene selectivity without, or as little as possible, losing the fraction of methanol for methylation. To reach higher yield of -xylene and more methanol usage in methylation, zeolite catalyst design should consider improving mass transfer and afterwards covering external acid sites by surface modification to get short “micro-tunnels” with shape selectivity. A solid understanding of mass transfer will benefit realizing the aim of converting more methanol feedstock into -methyl group.

关键词: shape selective catalysis     methylation of toluene    

Determining casting defects in near-net shape casting aluminum parts by computed tomography

Jiehua LI, Bernd OBERDORFER, Daniel HABE, Peter SCHUMACHER

《机械工程前沿(英文)》 2018年 第13卷 第1期   页码 48-52 doi: 10.1007/s11465-018-0493-y

摘要:

Three types of near-net shape casting aluminum parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, Al-7Si-0.3Mg), and semi-solid casting (A356, Al-7Si-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) significantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi-solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.

关键词: near-net shape casting     aluminum parts     casting defects     low pressure die casting     die casting     semi-solid casting     computed tomography    

Quantification of coarse aggregate shape in concrete

Xianglin GU,Yvonne TRAN,Li HONG

《结构与土木工程前沿(英文)》 2014年 第8卷 第3期   页码 308-321 doi: 10.1007/s11709-014-0266-6

摘要: The objective of this study is to choose indices for the characterization of aggregate form and angularity for large scale application. For this purpose, several parameters for aggregate form and angularity featured in previous research are presented. Then, based on these established parameters, 200 coarse quartzite aggregates are analyzed herein by using image processing technology. This paper also analyzes the statistical distributions of parameters for aggregate form and angularity as well as the correlation between form and angularity parameters. It was determined that the parameters for form or angularity of coarse aggregates could be fitted by either normal distribution or log-normal distribution at a 95% confidence level. Some of the form parameters were influenced by changes in angularity characteristics, while aspect ratio and angularity using outline slope, area ratio and radius angularity index, and aspect ratio and angularity index were independent of each other, respectively; and consequently, the independent parameters could be used to quantify the aggregate form and angularity for the purpose to study the influence of aggregate shape on the mechanical behavior of concrete. Furthermore, results from this study’s in-depth investigations showed that the aspect ratio and the angularity index can further understanding of the effects of coarse aggregates form and angularity on concrete mechanical properties, respectively. Finally, coarse aggregates with the same content, type and surfaces texture, but different aspect ratios and angularity indices were used to study the influence of coarse aggregate form and angularity on the behavior of concrete. It was revealed that the splitting tensile strength of concrete increased with increases in the aspect ratio or angularity index of coarse aggregates.

关键词: coarse aggregate     form     angularity     digital image analysis     statistical distribution     splitting tensile strength    

Plastic materials and water sources actively select and shape wastewater plastispheres over time

《环境科学与工程前沿(英文)》 2022年 第16卷 第11期 doi: 10.1007/s11783-022-1580-1

摘要:

● Wastewater MPs exhibited resistomes and therefore health threats.

关键词: Microplastics     Whole-genome metagenomic sequencing     Plastisphere     Plastic degradation     MHETase    

Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy

Xiaojun GU, Xiuzhong SU, Jun WANG, Yingjie XU, Jihong ZHU, Weihong ZHANG

《机械工程前沿(英文)》 2020年 第15卷 第4期   页码 547-557 doi: 10.1007/s11465-020-0595-1

摘要: Carbon fiber reinforced polymer (CFRP) composites have excellent mechanical properties, specifically, high specific stiffness and strength. However, most CFRP composites exhibit poor impact resistance. To overcome this limitation, this study presents a new plain-woven CFRP composite embedded with superelastic shape memory alloy (SMA) wires. Composite specimens are fabricated using the vacuum-assisted resin injection method. Drop-weight impact tests are conducted on composite specimens with and without SMA wires to evaluate the improvement of impact resistance. The material models of the CFRP composite and superelastic SMA wire are introduced and implemented into a finite element (FE) software by the explicit user-defined material subroutine. FE simulations of the drop-weight impact tests are performed to reveal the superelastic deformation and debonding failure of the SMA inserts. Improvement of the energy absorption capacity and toughness of the SMA-CFRP composite is confirmed by the comparison results.

关键词: carbon fiber reinforced polymer composite     shape memory alloy wire     impact resistance     drop-weight test     finite element simulation    

标题 作者 时间 类型 操作

Soil arching effect of Lattice-Shaped Diaphragm Wall as bridge foundation

Jiujiang WU, Lingjuan WANG, Qiangong CHENG

期刊论文

Multi-scale investigation of active failure for various modes of wall movement

期刊论文

Improved genetic algorithm and its application to determination of critical slip surface with arbitrary shapein soil slope

LI Liang, CHI Shichun, LIN Gao, CHENG Yungming

期刊论文

An extended thermo-mechanically coupled algorithm for simulation of superelasticity and shape memoryeffect in shape memory alloys

S. HASHEMI,H. AHMADIAN,S. MOHAMMADI

期刊论文

A novel shape memory alloy actuated soft gripper imitated hand behavior

期刊论文

Size and shape effects of MnFeO nanoparticles as catalysts for reductive degradation of dye pollutants

期刊论文

Temperature effects of shape memory alloys (SMAs) in damage control design of steel portal frames

Xiaoqun LUO, Hanbin GE, Tsutomu USAMI

期刊论文

A fully solid-state cold thermal energy storage device for car seats using shape-memory alloys

期刊论文

板形计法的定义及实验应用

张进之,段春华,朱健勤

期刊论文

Calculation method on shape finding of self-anchored suspension bridge with spatial cables

Yan HAN, Zhengqing CHEN, Shidong LUO, Shankui YANG

期刊论文

Shape selective catalysis in methylation of toluene: Development, challenges and perspectives

Jian Zhou, Zhicheng Liu, Yangdong Wang, Dejin Kong, Zaiku Xie

期刊论文

Determining casting defects in near-net shape casting aluminum parts by computed tomography

Jiehua LI, Bernd OBERDORFER, Daniel HABE, Peter SCHUMACHER

期刊论文

Quantification of coarse aggregate shape in concrete

Xianglin GU,Yvonne TRAN,Li HONG

期刊论文

Plastic materials and water sources actively select and shape wastewater plastispheres over time

期刊论文

Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy

Xiaojun GU, Xiuzhong SU, Jun WANG, Yingjie XU, Jihong ZHU, Weihong ZHANG

期刊论文